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SUMMARY 

A finite element method for solution of the stream function formulation of Stokes flow is developed. The 
method involves complete cubic non-conforming (C") triangular Hermite elements. This element fails the 
patch test. To correct the element and produce a convergent method we employ a penalty method to weakly 
enforce the desired continuity constraint on the normal derivative across the inter-element boundaries. 
Successful use of the method is demonstrated to require reduced integration of the inter-element penalty with 
a 1-point Gauss rule. Error estimates relate the optimal choice of penalty parameter to mesh size and are 
corroborated by numerical convergence studies. The need for reduced integration is interpreted using rank 
relations for an associated hybrid method. 
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INTRODUCTION 

There are three main formulations for Stokes and Navier-Stokes flows: (i) the primitive-variable or 
pressure-velocity formulation; (ii) the stream-function: vorticity formulation and (iii) the stream- 
function formulation. 

The primitive-variable formulation and variants of this form have received considerable study 
using finite difference and more recently finite element methods. The problem requires solution of a 
system of second-order differential equations and the corresponding variational problem implies 
that C" elements will be conforming. The stream-function:vorticity form of the equations is also a 
second-order system and again Co elements suffice in the variational finite element method. There 
are, however, added difficulties associated with the boundary conditions for vorticity. Finally, the 
stream-function form results from substituting for the vorticity in the stream-function:vorticity 
equations. This yields the single biharmonic equation for the stream function in the case of 
stationary Stokes flow and a non-linear fourth-order equation for stationary Navier-Stokes 
problems. 

in  the present study we shall consider only the finite element variational formulation of the 
stream-function form of Stokes flow. As noted above the problem is of fourth order. This implies 
that the variational problem involves admissible functions whose second derivatives are to be 
square integrable. i t  suffices then that the global finite element basis have continuous derivatives 
for conformity. Several conforming finite elements have been developed for plate bending 
applications and are equally applicable here. Some examples of C' elements are the rectangle with 
tensor product Hermite basis of Bogner et d.,' the quintic triangle of Cowper et d 2  and the 
reduced quintic of Bell3 and Argyris et aL4 Composite elements with interior basis constraints 
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such as the triangle of Clough and Tocher5 and non-conforming elements that satisfy the patch 
test6 may also be used. 

It is nevertheless interesting to note that apparently few studies have been made using C' 
triangles or other elements for solving the stream function equation. The most notable exception is 
the work by Olson and Tuann' using the C' quintic triangle. 

I t  is well known that the C' triangle with complete polynomial basis necessitates the use ofa high 
degree element (quintic with 21 degrees of freedom) and hence leads to a large element matrix 
(21 x 21) which adversely affects the bandwidth. For problems with smooth solutions, however, it 
is also clear that this element will produce highly accurate results for calculations with relatively 
coarse meshes. Given the variational statement and the weak condition on second derivatives, 
there are many practical problems which will not exhibit the high degree of regularity necessary to 
exploit the capability of the quintic element. The familiar driven cavity example and flow across a 
step are examples where singularities in the data influence the regularity of the solution and 
optimal rates will not be achieved. 

Other techniques for enforcing C' continuity using Lagrange multipliers have been pro- 
posed'-'' again in the context of plate bending. Recently we demonstrated that there may be a 
subtle linear dependence of the constraints when multipliers are used to this end and showed 
further that a penalty method may be formulated which does not exhibit this problem." 

In the present study we consider the use of the complete Hermite cubic triangle for the 
variational formulation of the stream function (biharmonic) equation. The element is only C' and 
the continuity of normal derivative across the interface between adjacent elements is enforced using 
a continuous penalty constraint term. Numerical experiments indicate that the method is practical 
if 1-point reduced Gauss quadrature is used for the penalty functional. Theoretical estimates and 
further numerical results are given. 

STREAM-FUNCTION FORMULATION 

The stream-function form of the stationary Navier-Stokes equation is 

- VAZ* + *y(A*)x - *x(A*)y =f (1) 

where v is the viscosity and f the applied body force. For low Reynolds number flows the equation 
can be linearized to Stokes flow and we have the biharmonic operator with 

A2$ = - f / v  ( 2 )  
The weak variational forms of (1) and (2) are easily formulated from a weighted-residual approach. 
For the Navier-Stokes problem (1) we have: find $EH' (the space of functions with square 
integrable second partial derivatives) satisfying the essential boundary conditions and such that 

vAlC/Awdxdy- A$[(I+!/,,W)~-(~~W),,] d.Xdy= ,fwdxdy (3) J Cl J* 
for all admissible test functions w with w = 0 and dw/dn = 0 on that part of the boundary dsZ where 
essential conditions apply. 

For Stokes flow the statement (3) simplifies to 

lnvA*Awdxdg = fwdxdy (4) 

In our study it suffices that we consider the linear Stokes flow. The main results concerning the 
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penalty formulation apply to the non-linear problem although the error estimates would have to be 
generalized to this case. 

APPROXIMATE PROBLEM 

Consider a bounded flow domain IR discretized as a union a h  of triangles fie Let {$i} be the global 
finite element basis defining the approximation space H" on !& The approximate statement of the 
Stokes problem (4) is: find $ h ' f f h  satisfying the essential conditions on anh and such that 

c I- 

for all admissible W,,EHh. (A similar statement holds for the non-linear problem.) 
In this analysis we are particularly interested in non-conforming elements, i.e. H h  is not a 

subspace of the solution space. This implies that the sequence of approximate stream-function 
solutions may not converge on mesh refinement to the true solution. To enforce the continuity of 
the normal derivative across the interface Ts between adjacent elements we add the restriction that 
the minimization problem giving (5 )  as its first variation should hold on a subset C satisfying the 
constraint 

where 1.1 denotes the interface jump and Ts is any interface in the discretization. The penalized 
minimization problem corresponding to ( 5 )  and (6) is: find $;EH" satisfying the essential boundary 
conditions and minimizing, for penalty parameter 0 < E << 1, 

where s = 1,2,. . ., S is the number ofelement sides in the interior and e is the element index. Setting 
6 J ,  = 0 at $; we obtain 

for all admissible w,,. 

Jgds denote the n-point numerical Gauss quadrature on Ts. Then (8) becomes 
Later we shall find it advantageous to use reduced integration for the penalty term. Let 1,(g) = 

To determine the dependence of E on h we use 1: = Ch" with constant C and 0 to be determined from 
the error estimates. 

Introducing the element basis in (9), we determine the penalized finite element system for a given E 
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and linear algebraic solution yields the penalty solution $1. For E sufficiently small we anticipate 
$1 -.+$,,where $,, -+ $ on mesh refinement. That is, the penalty term appropriately corrects the non- 
conforming element. In practice we assemble the interface penalty matrix contributions in a 
separate loop over the interfaces. 

ESTIMATES 

We first note that the bilinear form on the left in (9) can be used to determine an appropriate norm 
III ’ lllh on Hh, 

Next we introduce the complete Hermite triangle (cubic with function value and first partials at the 
vertices and function at the centroid as degrees of freedom). Later we shall show using rank 
conditions that the method with 1-point integration is stable whereas the 2-point and 3-point 
schemes are not. 

Theorem 

Let Q be a polygonal domain and let f ~ L ’ ( 0 )  such that $EH‘(SZ), r 2 5/2 is the solution of the 
variational Stokes problem. The finite element solution $ h  for the cubic triangle and 1-point 
integration of the penalty term converges to II/ in the norm lll.JIJh as 

where 
111 $ - $hlllh Chr 11 $ 1Ir.R (11) 

(12) ,u = )min(o - 1,2r - 3 - CT, 5 - CT)  

and we have used E = Ch“, constant C.  

Proof: The proof follows as an extension of the analysis of BabuSka and Zlamal12 to the case of 
m reduced integration. (See also References 13 and 16 for details.) 

Remark 

Note that the best rate O(h) in this norm is achieved for CT = r - 1 if r < 4. For smooth solutions 
( r  2 4) the best rate is obtained for CT = 3. That is, E = Ch3. 

Corollary 

The result (1 l), (12) applies in the norm II.I(,, given by 

Proof. We first note that 
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Setting e = I+? - 1c/h for u in (14) and using [ae/an] = [aI+?,/an] 

In particular, since [at,hk/an] is quadratic on Ts and zero at the end points it achieves its maximum 
magnitude at the central Gauss point. Hence I[dll/,,/an]2 > 0 on r, and achieves its maximum at the 
mid-point. It follows that for the 1-point rule Is(-) in (15), 

so that 
Ilell,Z-lllelll,2~O 

I l e l l k  Illelllh 

which implies that the estimate holds in the new norm. 

Remarks: 

The estimates also hold in the norm given by 

Iul,2= f 1 vAvAvdxdy 
e = l  ne 

introduced by CiarletI7 for non-conforming methods. 
The estimates can be shown to hold in the H' norm using the approach of BabuSka and 
Zlamal.'2 
We emphasize that the estimates are for the penalty method with 1-point quadrature and that 
the extensions here refer only to the norm in which the error in this solution is measured. 

NUMERICAL EXPERIMENTS 

As a model problem with smooth solution satisfying the conditions of the theorem we take the 
example introduced by Johnson and Pitkaranta14 for studying the primitive variable approxi- 
mations. The flow problem for + is given by 

A'+ =flv,  in (0,l) x (0,l) 
with (17) 

where s /v  is calculated to correspond to the smooth stream function 

*(x, y) = x2y'( 1 - x)2( 1 - y)2 (18) 

In the following numerical studies the square domain is discretized to a uniform mesh of right 
isosceles triangles as shown in Figure 1 and having a characteristic mesh length of size h along 
horizontal and vertical sides. The behaviour of the error in the HI-norm as the mesh is refined for 
the non-conforming method for this problem is shown in Figure 2. The numerical solution to the 
penalty problem is computed on successive uniform meshes with h = 1/2, 1/4, 1/6, 1/8, 1/10 and 
1/16 for E = Ch", Q = 3 and penalty constants C = 1, In the first set of calculations 
exact integration (3-point rule) of the penalty term is used. The results are shown in Figure 3. This 
numerical study reveals the notable result that the method fails to converge for these values, the 
theoretical estimates notwithstanding. We note further (Figure 4) that the solutions on successively 

and 
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Figure 1. Sample discretization of domain by Hermite triangles for convergence studies showing typical element a, and 
interface Ts along which penalty constraint applies 

Figure 2. Global error in the If‘-norm for the non-conforming method 

refined meshes converge towards $,, = 0 which might be interpreted as a ‘locking’ behaviour 
similar to that observed in some other penalty and mixed finite element methods. 

Motivated by similar considerations in other penalty finite element studies we examine the effect 
of reduced integration. For the 2-point rule the method again fails in the same way as for exact 
integration. However, with the 1-point rule we obtain a convergent method as indicated by the 
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-log h 

Figure 3. Global errors for the solution in the H'-norm for different values of penalty constant C, and using exact 
integration of penalty term 

results in Figure 5 .  Larger values of C (e.g. C = lo2) produce results that are poor on coarse meshes 
as the penalty is not sufficiently strongly enforced, but converge as the mesh is further refined. The 
rates in the norms I I ) . I ) l h  and I J * J I 1  are given by the slopes in Figure 6. 

INTERPRETATION FROM RANK CONDITIONS 

The failure of the exact and 2-point quadrature schemes can be interpreted using the equivalence of 
the penalty method to a multiplier method. In the present instance the multiplier method is a 
hybrid method with the approximate multiplier determined from the finite element solution 
such that 

at each Gauss point t i  on Ts. For the 1-, 2- and 3-point rules the spaces of multipliers Ah are 
piecewise constant, linear and quadratic, respectively. The rank condition is derived from the inf- 
sup or stability condition for a saddle-point problem. It may be expressed formally in the following 
way: 

implies that ph = 0. 
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Figure 4. Lz-norm of the solution and of its approximation obtained using exact integration of penalty terms 

If ,uheP,(8R,) and I[d~~/8nl)~P,(i?R,) for triangular elements, where P, denotes the class of 
polynomials of degree s, then (20) implies ,uh = 0 if and only if+ 

t < k - 1 ,  ifkisodd 
t < k - 2, if k is even 

In the present case [8uh/anJ is quadratic ( k  = 2) and we find that (21) holds for t = 0 (piecewise 
constant or 1-point rule) but fails for t = 1,2 (piecewise linear and quadratic multipliers defined by 
the 2-point and 3-point rules). 

DRIVEN CAVITY CALCULATION 

As a more practical example we consider the well-known driven cavity problem. This example is 
frequently used as a test case for finite difference and finite element programs because of the 
abundance of other computed solutions. In other respects, however, we remark that this case is far 
from ideal as we have no analytic solution and singularities are present in the boundary data at the 
corners adjacent to the driven surface. It does, however, raise some additional interesting points 
concerning our penalty method. 

*We have recently generalized the results given by Carey and Oden’’ for second-order problems to fourth-order problems 
to obtain this result.16 
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I I 
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-log h 

Figure 5. Global rates ofconvergence for the solution in the HI-norm for different values ofpenalty constant C and 1-point 
Gauss rule 

- log,olll J / -  *ll, 
slope= I 

-0.2 0.4 0.6 0.8 1.0 
- log h 

Figure 6. Global rates of convergence for the solution in the 11.11 and l l l . l l l h  norms for C = 1 and 1-point rule 
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There are no body forces and the governing equation becomes 

with 
A2$ = 0, in i2 = (0,l) x (0,l) 

$=O,  on dQ 

and from the ‘no-slip’ requirement 

+,=O, o n d o  
t+by=O, on y = O , x = O  and x =  1 (24) 

+by = 1, on y = 1 (the driven surface) 
The corresponding variational problem is solved using the Hermite cubic element with inter- 

element penalty treated using the l-point Gauss rule. Streamline contours are plotted in Figure 7 
for solution on a uniform mesh with h = 1/10. The velocity components along the lines x = 1/2 and 
y = 1/2 are plotted in Figure 8. These results compare well with other published results for this 
problem. 

In closing we make some interesting observations concerning the treatment of boundary data 

Figure 7. Contour plot of stream function for driven cavity 
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Figure 8. Velocity profiles along the lines x = lj2 and y = 1/2: (a) u-profile; (b) u-profile 

and effect of the corner singularities. In these calculations the data (23), (24) are specified as 
interpolated point values on an with $ y  = 1 at the corner points (0,l) and (1,l). Values of $, $, and 
I),, are interpolated at the boundary nodes. This implies that $ = 0 on dS2 is satisfied identically but 
the normal derivative $, = 0 or 1 (as appropriate) holds only at the nodes. That is, boundary 
conditions involving the normal to a boundary side only are satisfied at the boundary nodes. We 
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can strengthen this by adding a penalty to enforce $, - 1 = 0 along y = 1 to produce results closely 
agreeing with those in Figures 7 and 8. Adding a further boundary penalty on the remaining sides 
yields results very different from those in Figures 7 and 8. In fact such a boundary penalty on all 
sides produces velocities with magnitude greater than unity at some points in the interior. 

A possible interpretation of this can be conjectured as follows: The standard methods for 
approximate solution of this problem relax the conditions at the upper corners so that the velocity 
in the finite element problem changes continuously. Physically this permits inflow or outflow of 
fluid through the boundary sides of the elements adjacent to these corners. When the boundary 
penalty is used to enforce the given conditions the jump in the velocity at the corners is more 
strongly felt since the penalty acts to enforce the condition along the remainder of the side and the 
approximation must then rise abruptly to satisfy 9, = 1 at the upper corners. The abrupt change in 
our coarse mesh solution leads to significant oscillatory perturbations in the interior. Finally, to 
corroborate this interpretation we applied the penalty on all of the boundary except the vertical 
element sides at the corners. The resulting solution closely agrees with that in Figures 7 and 8. 

CONCLUDING REMARKS 

Inter-element penalties have been introduced as a technique for correcting the non-conforming 
Hermite cubic triangle. The method is stable and hence convergent if the penalty term is computed 
using 1-point Gauss integration. For a model problem with smooth solution the penalty E = Ch“ 
produces best rates of convergence for cr = 3 and the rate is confirmed by numerical experiment. A 
final computation considers the driven cavity problem and shows that the method yields accurate 
results. The effect of the corner singularities in the presence of a boundary penalty proceduces some 
interesting results. We remark in closing that clearly the element and penalty procedure used here 
can be applied equally to other fourth-order problems such as those of plate bending. 
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